Structures of microfilament destabilizing toxins bound to actin provide insight into toxin design and activity.

نویسندگان

  • John S Allingham
  • Angela Zampella
  • Maria Valeria D'Auria
  • Ivan Rayment
چکیده

Marine macrolides that disrupt the actin cytoskeleton are promising candidates for cancer treatment. Here, we present the actin-bound x-ray crystal structures of reidispongiolide A and C and sphinxolide B, three marine macrolides found among a recently discovered family of cytotoxic compounds. Their structures allow unequivocal assignment of the absolute configuration for each compound. A comparison of their actin-binding site to macrolides found in the trisoxazole family, as well as the divalent macrolide, swinholide A, reveals the existence of a common binding surface for a defined segment of their macrocyclic ring. This surface is located on a hydrophobic patch adjacent to the cleft separating domains 1 and 3 at the barbed-end of actin. The large area surrounding this surface accommodates a wide variety of conformations and designs observed in the macrocyclic component of barbed-end-targeting macrolides. Conversely, the binding pocket for the macrolide tail, located within the cleft itself, shows very limited variation. Functional characterization of these macrolides by using in vitro actin filament severing and polymerization assays demonstrate the necessity of the N-methyl-vinylformamide moiety at the terminus of the macrolide tail for toxin potency. These analyses also show the importance of stable interactions between the macrocyclic ring and the hydrophobic patch on actin for modifying filament structure and how this stability can be compromised by subtle changes in macrolactone ring composition. By identifying the essential components of these complex natural products that underlie their high actin affinity, we have established a framework for designing new therapeutic agents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toxinology of Venomous Marine Worms; A Review

Although the widespread distribution of venomous marine worms around the world, the structural and toxinologcal studies of their toxins are still limited.This study was aimed to evaluate the toxicity of poisonous marine worms. Touching the cilium of Chloeia flava and Sipuncula marine worms cause painful inflammation of the skin. Many species of nemertines prey their victims by a flexible prob...

متن کامل

Expression, Purification and Docking Studies on IMe-AGAP, the First Antitumor-analgesic Like Peptide from Iranian Scorpion Mesobuthus eupeus

Scorpion venom contains different toxins with multiple biological functions. IMe-AGAP is the first Analgesic-Antitumor like Peptide (AGAP) isolated from Iranian scorpion Mesobuthus eupeus. This peptide is similar to AGAP toxin with high analgesic activity, extracted from Chinese scorpion and inhibits NaV1.8 and NaV1.9 voltage-gated sodium channels involved in the ...

متن کامل

Expression, Purification and Docking Studies on IMe-AGAP, the First Antitumor-analgesic Like Peptide from Iranian Scorpion Mesobuthus eupeus

Scorpion venom contains different toxins with multiple biological functions. IMe-AGAP is the first Analgesic-Antitumor like Peptide (AGAP) isolated from Iranian scorpion Mesobuthus eupeus. This peptide is similar to AGAP toxin with high analgesic activity, extracted from Chinese scorpion and inhibits NaV1.8 and NaV1.9 voltage-gated sodium channels involved in the ...

متن کامل

A structural basis for regulation of actin polymerization by pectenotoxins.

(PTXs) are polyether macrolides found in certain dinoflagellates, sponges and shellfish, and have been associated with diarrhetic shellfish poisoning. In addition to their in vivo toxicity, some PTXs are potently cytotoxic in human cancer cell lines. Recent studies have demonstrated that disruption of the actin cytoskeleton may be a key function of these compounds, although no clarification of ...

متن کامل

Small GTP-binding proteins of the Rho- and Ras-subfamilies are not involved in the actin rearrangements induced by attaching and effacing Escherichia coli.

Attaching and effacing Escherichia coli (AEEC) are extracellular pathogens that induce the formation of actin-rich structures at their sites of attachment to eukaryotic host cells. We analysed whether small GTP-binding proteins of the Rho- and Ras-subfamilies, which control the cellular actin system, are essential for these bacterial-induced microfilament reorganizations. For this purpose we sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 41  شماره 

صفحات  -

تاریخ انتشار 2005